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1. INTRODUCTION

The objective of this investigation is the development of a theoretical model
for propagation of Extremely High Frequency (EHF) radio waves in a sirongly scat-

. tering medium such as a forest. The forest is described as a random medium which,
in first approximation, may be regarded as statistically homogeneous; and wave prop-
agation in this mediun is characterized by the theory of radiative energy transfer
(transport theory). This theory permits one to take multiple scattering effects

b fully into account while interference effects are neglected. Experimental evidence

confirms that the coherence length of mm waves in vegetation is short so that the

suppression of interference effects is an acceptabie approximation.

A1l scatter objects in a forest environment, including tree trunks, btanches,
) and leaves, or pine needles, have large dimensions compared to a wavelength in the
m-wave region. As a consequence, the forest medium will produce strong forward
scattering and its scatter characteristic (phase function) may be represented by a
proncunced forward lobe with an isotropic background. Assuming this type of phase
function, the medium is characterized by four parameters: the absorntion cross

Y

section per volume Opos the (total) scatter cross section per volume g the beam
width Ays of the forward scatter lobe, and the ratio o of the forward scattered
power and the total scattered power,

F These four quantities are determined by the macroscopic and microscopic
structure parameters of the forest and, in principle, can be derived from these -
parameters. No attempt is made here to establish this relation theoretically.
Considering the structural complexity of the forest environment, this would appear
,' to be a hopeless task. Rather, the transport equation is formulated and solved in
) general terms and the deperndency of the solutions on the parameters ope 9> AYS and
¢ is established. Comparison with experimental results then permits one tc deter-
mine est*mates for these parameters by adjusting them such that the theoretical

&' ' curves agree with the experimental data. At the same time, the theory serves to

g explain and interpret the experimental results. Theory and experiments are shown
i' to be in good qualitative agreement. The experimental data utilized in this report
was obtained by Violette and Lspeland (1, 2. Achieving good quantitative agree-

ment, however, is not without difficulties. A larger measured data base and a re-
finement of the theory will probably be required.
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Propagation characteristics to be determined include the range dependence of
both the coherent and incoherent field components of mm-wave beaws transmitted
through woods and forests, and the directional spectrum of the incoherent component
(beam broadening) as a funclion of vegetation depth and density. The theory shows,
in particular, that the range dependence is no: determined by a simple exponential
decrease in signal strength at constant attenuation rate but a high atlenuation
rate at short distances into woods gradually transforms into a much lower attenu-
ation rate at large distances. This complex range dependence has been confirmed
by the experiments and is explained by the interplay of the coherent (direct path)
component, which dominates at short distances into woods but is strongly attenu-
ated, and the incoherent (multiply-scattered) component, which is less attenuated
and takes over at large distances. The transition is accompanied by substantial
beam broadening. The comparison of theory and experiments indicates, furthermore,

that the parameter o is close to unity and that Og >> Op. In other words, forward

scattering seems to be Strong and scattering seems to dominate over absorption.

adctodi
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I, THEORY

1. Fundamentals

The electromagnetic field in a random medium of scattercrs can be split into
two parts, the coherent component and the incoherent component. The coherent com-
ponent is the average field which at any point in space has a weli.defined direction
of propagation and a well-defined polarization. This component decreases due to
both absorption and scatter, and its attenuation rate is comparvatively high. The
incoherent component is the zero-mean field. It is generated by the scattering of
the coherent component and consists of many wave trains propagating in various di-
rections. Hence, at any point in space, the incoherent component does not have a
unique direction of propagation but is characterized by a directional spectrum. In
transport theory, it is assumed that the constituent wave trains are uncorrelated
in phase and add in power. The incoherent component decreases at a slower rate
than the coherent component since it is attenuated due to absorption only (though
over an increased path length) while it scatters into itself. Scattering of the
incoherent component reproduces the incoherent component. In geneval, this field
component is partially depolarized.

While the coherent component will dominate at short distances from a coherent
source, the incoherent component takes over at large distances, leading to a re-
duced attenuation rate, significant beam broadening, and depolarization. The co-
herent and incoherent field components are powerwise orthcgonal. If E is the elec-
tric field strength in a random medium, then the average field intensity js given
by

T = <E><D > + <AF-aF*> o ~
with At = £ - <E>
In other words, the total intensity is the sum of the intensities of the coherent
and incoherent field components.

The fundamental quantity used in transport theory is the specific intensity
1{r,s) which is defined as the power per unit area and per unit solid angle propa-

i

gating at point v into the direction

H(r5) = BLE) (1)

Here, da is the area of the surface element (at point ¥)

vector s, and di2 is the differential of the solid angle 2 centered about V¥, see

normal to the unit
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Fig. 1. Definition (1) apnlies to time harmonic fields in a time independent ran-
dom medium, the case considered here. (Wind induced motion in woods and forests is
negligibly slow campared to the travel times of EM signals.) The specific inten-
sity can be u=ed to characterize both the coherent and incoherent field components.
In the casc of the coherent component. which has a unique divection of propagation,
I takes the form of a &-funciion in ¥.

The transport equation { 3], the basic equation of the theory of radiative
energy transfer, is obtained by formulating the power conservation theorem in terms
of the specific intensity I. Consider the cylindrical volume dV = da-dl of Fig. 2,
which is centered at point ¥ and whose axis has the direction of the unit vector s.

Radiation with the specific intensity 1 (¥,§) passing throuygh this volume will vary
because of two effects:

(1) Absorption and scattering by the random medium will reduce the

power propagating in the direction 5. The specific intensity
will decrease by the amount

dI1 = -(UA t 05) I(¥,3) N (2)

where 9A is the absorption cross section per unit volume of

4y
)
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) scatier cross section
per volume. In general, both Ya and Ug depend on r.

(2) A fraction of the power propagating in other directions §~°
will be redirected into the direction § by scattering with-
in the volume element dV, This effect will increase I (¥,5)
by an amount which is detevinined by the scatter characteris-
tic* of the medium p(3,57). ‘(he increase of I{¥,3) is given
by

Sy [T os e 1) da- .

dI2 o 03‘29 p{5.¥°) I(¥,T7) do° d1 (3)
A

where the integration is performed over all gpatial

dirvections T° and p is assumed normalized such that

fr

A [ Pl @ (4)

An

PO s e S e

* I transport theory p(s,57) is usually called the "phase function" of the scatter
medium, though it is not related in any way to the phases of the electric or mag-
netic field strengths.
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Similar to 9p and Og> the scatter characteristic, in general,
will be a function of ¥. Reciprocity requires that p is sym-
metric in§ and 5 :
p(3,57) = p{s",5) (5)
The total variation of the specific intensity 1 over the length dl1 of the
voiume element dV is tha sum of dI1 and dIZ:

dI = [§-grad I(¥,5)] d1 = dI1 + dI2
Hence, with Equations {2) and (3):

5-grad I(r,s) + (OA + os) 1{¥,3)
og o e (6)
- p(3,57) I(¥,s7) do~

tquation (6) is the transport equation in its scalar formulation. A forcing

!

tern which usually appears on the right side of this equation is omitted here since
we will assume that all sources are located outside the random medium. More pre-
cisely, we shall assume that the transmit antenna is situated outside the forest

at a certain distarce from the forest-to-air interface while the receive antenna is
placed within the forested region. Reciprocity insures that the same results will
be obtained when transmitter and receiver are interchanged.

2. Formulation of the Problem

In analyzing nm-wave propagation in woods and forests, we use a simple model
which is illustrated 1n Fig. 3. A forest halfspace is separated by a planar in-
terface from an air halfspace. The forest is characterized as a statistically
homogeneous medium of random scatterers. In other words, it is assumed that Tps
ug and p do not vary with ¥ and are the same at every point in the medium. Further-
more, we assume that the phase function p depends only on the scatter angle y =
arc cos (5-357) subtended by the directions $ and §°. Since, in a forest, alil scat-
ter elements are large compared to mm-wavelengths, strong forwerd scattering will
occur and p is assumed to consist of a narrow Gaussian forward lobe superimposed
over an isotropic background, i.e.,

(37 )° (7)

. \
2 S (1-r1)

2
p(y) = « (ZV
S
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The function p(y) is indicated in Fig. 4. The width of the forward lobe Ays
is assumad to be <<m, and a is the ratio of the forward scattered ana the total
scattered power. It is evasily verified that p(y) satisfies Equation (4).

The transmitter in the air halfspace is assumed to be sufficiently far away
from the edge of the forest so that the field incident upon the ajir-to-forest in-
terface can be described as a plane wave. This plane wave may be impinging nor-
mally or at an oblique angle. The coordinate system is indicated in Fig. 3. In
particular, Z is the coordinate normal to the interface which is assumed to coin-
cide with the plane Z = 0; 0 is the angie counted from the positive Z-direction;
and ¢ is the projected angle in pianes Z = constant.

With the above assumptions, the spacific intensity I in the forest medium
will depend on the coordinate Z and the angles 6 and ¢ only, but it is independent
of the cross-sectional coordinates x and y. The transport equation (6) then re-

duces to
al . ;
cos 8 == (Z; 0,0) + (0, + og) I(Z; 0,9)
2r m
° [ by s (8a)
- & p(v) I(Z; 87,97) sin 6°de"d¢~
00
for 2>0
where
cos y = cos (¢-¢”) sin 8 sin 6” + cos 6 cos 8~ (8b)

In the plane 2 = 0, I is determined by the incident plane wave (for a1l for-
ward directions). Hence, we have the boundary condition
5(6-6_)

—377§§—6(¢-¢p) for 0 <0 < (9a)

1{0;6,¢) = S
2

p

The symbol & denotes the well known S-function. Sp, ep and ¢p are the
Poynting vector and the propagation angles of the incident wave. Finally, since
the medium is not only scattering but also dissipative, I must vanish at infinity,
i.e.,

I1(Z; 0,¢) ~ O for 7+ o (9b)

Equations (8) and (9) provide the transport theory description of the forest
model considered here; the equations permit a unique solution of the problem.

PURRER
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Mathematically speaking, Equations (8) and (9) formulate the problem in
terms of a homogeneous integro-differential equation with an inhomogeneous bound-
ary condition. By a simple transformation, the problem may be reformulated as an

' inhomogeneous equation with a homogeneous boundary condition. The transformation
is discussed here since it provides additional physical insight. We split the
specific intensity I into two parts [3]:

l‘ . 1(z.6,¢) = 1,

s (22 00) + 1 (2:8.9) (10)

where lri is called the reduced incident intensity and Id the diffuse intensity

(3. 1 is chosen to satisfy the boundary condition in the plane z = C and the

ri
z transport equation (8a} with the interaction term on the right side suppressed,
i.e.
5(0-@2) .
. = RPNV - £ - LN
L (030,9) = Sp e e ¢p) for 0<¢ <3 (11a)
- )
' Cosp -z +-(0A + os) I3 =0 for z > 0 (11b)
These equations can be solved in closed foirm:
o, + 0
o %*% . s(e-6 )
~ Loy (Z3 040) = S) expb =z} | 1 P 6(¢—¢p) (12) '
g p sin .
- for Z > 0 o
?Z The diffuse intensity then has to satisfy the equations: :i
ii i
Lé 4 (058,9) =0 for 0<® 5.3— ,1=0 (13a) E
" Iy (236,0) » 0 for 7+ (13b) 0
» b
ol o
_._.j + =
cosp w5 ¥ (oA + oS) I
21
- o, [/ RSN
® ) = e / / p(y) Id (Z; 67,07} sin 07do"deo” I
g 5 ,
%A 95 (13c)
o T Cose
N p -7
g Sp e P(Yp) for 2 >0

1




with cos = ¢cos (- sin 8 sin 6+ cos ¢ cos
Yp (¢ ¢p) p 0 0,

The second term (forcing item) on the right side of Equation (13c) is the contri-
bution of Iri to the interaction integral.

Evidently, the reduced incident intensity Iri is the continuation of the
incident plane wave into the random medium where its magnitude decreases exponen-
tially with distance because of absorption and scattering. Similar to the inci-
dent plane wave, Iri has & well-defined direction of propagation; it can be con-
sidered as the coherent field component. i.e., as the specific intensity of the

average field.

The diffuse intensity Id’ on the other hand, can be interpreted as the in-
coherent field component, i.e., it represents the specific intensity of the zero-
mean field. The incoherent component is generated by the scattering of the co-
herent component as represented by the inhomogeneous term in Equation (13c). The
energy flow of Id directed into the scatter medium is zero in the interface plane
Z = 0 where no scattering of the coherent component has taken place as yet. This
is formulated by boundary condition (13a).

Before proceeding to solve [.uations (13), the problem of characterizing
the polarization properties of electromagnetic fields in randoii wedia is briefly
discussed here. The coherent component has the same well-defined polarization as
the incident plane wave. The incoherent component, on the other hand, is in gen-
eral, partially depolarized. This means that, in actuality, the diffuse component
should be represented in terms of the four Stokes parameters and the phase
function p in terms of a 4 x 4 element Stokes matrix, which would result in a form-
ulation of the radiative energy transfer problem in a forest in terms of four
coupled integro-differential equations.

However, if reasonable assumptions are made concerning the scatter prop-
erties of the forest medium, the Stokes matrix can be simplified and the equation
for the first Stokes parameter becomes decoupled from the remaining three
equations. The first Stokes parameter is of particular interest since it repre-
sents the sum of the intensities associated with two orthogonal polarizations,
i.e., it represents the total intensity of the incoherent component at any point
in space. The decoupled ecuation for this first Stokes parameter takes the form
of the scalar transport equation considered here (Equations (12)) and permits
determination of the range dependence and beam broadening of EM-waves traveling
through vegetation. Study of this equation, therefore, appears well justified,
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althouyh an investigation of depolarization effects would require consideration
of the three remaining equations as well,

The conditions under which decoupling of the equation for the first Stokes c
parameter occurs can be expressed in terms of the co-polarized and cross-polar- -
ized field strength components of scattered wave trains and their correlation, SR
Though conceptually not difficult, a detailed discussion of these conditions is
rather tedious and goes beyond the scope of this report. In physical terms, the
conditions can be stated simply by considering a wavetrain incident from direction

R
- el

S and scattered into direction §. Decoupling will occur when the total intensity
of the scattered wave train will depend only on the total intensity of the inci-
dent wave train but (when averaged over many S~ + T scatter events with both S

and S~ fixed) is independent of the polarization properties of the incident radi-
ation. It can be assumed that this condition is satisfied for mm-waves propagat-
ing in a forest environment.

3. Solution of the Problen,

We write with Equation (7)

ply) = aq(y) + (1 - a) (14a) fi
where ’ -(:¥-) iim
ay) = ()% M5, Ay ge<r (14b) i
By 3
is the forward lobe of the phase function p and {l-a) is the isotropic background, gj;ﬂ

To solve Equations (13), we split the diffuse intensity Id into two parts

[0Z30,¢) = 1,(Z; 0.9) + 1,(2;8) (15) w..

where ]1 is determined primarily by the forward lobe q(y) of the scatter function
and I2 is the remainder of Id which is primarily determined by the isotropic
background. Thus, Equation (13c) is separated into two equations: A
'311 e en -
cosb gy + (Gy + 0} = 5> of [ aty) I, (Z307¢7) sing do“de” )
00 N
. Nl (16a) s
cos© e,
+ —
oSy e P oaly ) .

&G
21
=~
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cos0 5%( + (oA + os) 1, = Eg-uj)r q(y) I, (Z;07) sin 0"do"d¢
00
) - (16b)
S r * " Y N - » -
+ ﬁﬁ'(l - a) J ./ {II(Z;e N 12(2;9')}s1n()d0 d¢
00
g, t 0
g A S
e z

& (1 -a) Sp e cosep

for 7>0
Equations(16)can be interpreted on physical grounds and can be simplified by
introducing the following approximations:

(a) Since the specific intensity I1 is generated by forward scattering
(on]y the forward lobe q of tne scatter characteristic appears in
Equation (16a)),it can be expected that I1 will be characterized by
a strong and relatively narrow peak about the incidence direction
of the primary wave, while I1 will be very small in other directions.
rience, the factor cos 8 in the first term on the left side of
Equation (16a) can be replaced by cos 9p which simplifies solution
of this equation considerably.

(b} The specific intensity I, is primarily determined by the isotropic
background of the scatter characteristic p and will have a broad
directional spectrum. Hence, in evaluating the first integral on
the right side of Equation (16b), the function q (y), which is
characterized by a narrow peak, can be treated as a §-function.
With Equations (4) and (8b), we find:

m
1
Lt

o — Y

™
f q(y) 12 (2;0°,9) sin 0°d0°d¢~ :IZ(Z;B,M (18a)
0

(c) 1n Appendix A, it is shown that with approximation (a)

o UA +("Q>US

+
Jf Iy (Z: 6,¢) sinedodg = S {exp (- " cose,
0

o o
Z) - exp(- -Qose §Z)}
p

O\,

(18b)
which simplifies the second integral on the right side of Equation (16b).




With these approximations Equations (16a) and (16b) reduce to

[
1
51 - QW o b .
up AT + Il - 4” J / Q(Y) Il(T"l ;¢ ) (lll d¢)
o -1 (19a)
W -
9 Spe Ypoalyy)
[ ~ +1 -~ - i:._ ( )
9.2 W f Sy el u 19h
v 3T ' 12 2 lZ(T’“ ) du i SDe P
-1
where
- - [} 2 42 lé
cos y = cos (p=¢ ") [({1-p ) (1-u" ")) % + pu~
1.
_ cos y, = coc (¢'¢p)[(1-u2)(1-u§)]2 *

We have introduced here the following normalizations which are in accordance with
common usage:

(20a)

COS ¢
“p Op

it

: (o o )l =02 (optical density)
N (20b)

T =0yt (1) 602 = 572 = v (1~aM)
Og
W= - (Albedo) o
OA * 0S L 3
(20c) ‘ |
ﬂ _ (1"“)05 . (I-Q)N e 1‘
OA + (1‘@)05 l—qw

Both 1, and I, are assumed to satisfy the boundary conditions (13a) and (13b),
i.e.,
[1—-'-0 O_<_u<l

Il(t;u,w) = Q for (21a)




L(t:n) =0 for (21b) ]

- Note that Equation (19b) is the well-known transport equation for isotropic :f}ﬁf
_3 scattering. The only difference is that the scatter cross section is reduced by :}:{:
multiplication with (1-a) (only the fraction i-a of the total power scattered in . ‘t'“:

any scatter event is transferred into the isotropic background). The solution of

the isotropic transport equation depends only on the coordinates T and u {i.e., Z
and ©0) but is independent of ¢. Hence, I, = (2(?;p) as indicated already in
Equation (15).

.

In contrast, I1 will, in general, depend on all three coordinates i

. i
i T, U, and ¢. The only exception is tne case of normal incidence of the primary Lo
plane wave (ep = 0} where full symmetry about the Z-direction is maintained and 1l
is independent of ¢. A
’ ot 2erd
k; Solution of Equation for I1

Equation (19a) is solved by the method of undetermined coefficients, that is,
by writing I1 in the form:

%i I (Gusg) = (byr # bzrc + byt + - - -)e” ﬁ}) (22)

where the b are unknown coefficients. Note that representation (22) already ¢ -
isfies the boundary condition (2la), that 1, should vanish at T =0 and «. The U SR
Fi in general, are functions of y and ¢. S

A recursion relation for these coefficients is obtained by using Equation

(22) in Equation (19a) and observing that the latter equation must be satisfied
for any T > 0:

SRS (23a) -
bl(Ll,‘P) = Fr Lq) q Yp) a) =
27 +1
1 g1 Sy
blus¢) = [ ﬁb mou aly) bmﬁl(“ $7) dude (23b) -
o -1

m=2,3, - - - -.' \‘
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With the assumed Gaussian forward lobe q(Y), Equation (14b), the recursion relation
can be solved in good approximation in closed form, Details are shown in Appendix
B; the result is

5
. P 1 akym .
bp(ist) = g (Up () (24a)
m=1,2 « =~ =
where
- Lop 2
) 4 n\Ays
Gy, = =% e (2a0)
' ma\‘,-S

The approximation is valid for Dig <= T the case considered here. Note that the
functions N have the same general form as the forward lobe q of the phase function;
but the beamwidth Ay  is broadened to Ju&ys.

By combining Equations (22) and (24) we obtain for I1

- L 2 _l_(gET)m

M G.(Y..)
P opey wt gt T

S
II(T;“v“’) = Eﬁ' €
(25)

with cos Yp * cos (‘p-t‘bp)[(l-uz)(l-p%)]!i + Wiy

M is a suitably chosen upper limit. The general behavior of Il‘ as expressed by
Equation (25), is in accordance with expectation. For small distances into the
scatter medium, the first term of the sum dominates, which means that I1 increases
linearily with t,and its directional spectrum is narrow. (I1 is generated by for-
ward scattering of the coherent field component in accordance with the scatter
function Q(Yp))-

As 1 increases, I1 reaches a maximum and then decreases again because of the
exponential factor exp (-1/p ). Simultaneously, higher order terms in the sum on
the right side of Equation (25) become significant, which has the effect that (a)
the attenuation rate is slawed down and (b) beam broadening occurs.

The reduction of the attenuation rate can be determined explicitly by con-
sidering the forward direction where yp = (0, For this direction the summation can
be performed in closed form. We have

17
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S) }1) ll) ( )
I1 (i) < 5%~{ (e Poc Py Yp :
' (26) .-

TR,
b o PY L oMo g (y ) ~qy(y,)11)
e m=1m! (1‘ 1) " M-
As before, it is assumed that M is sufficiently large so that the value of 11 no _
. longer changes when M is increased. The minimm required M will increase with . SR

Solutlon of Lquatlon for l?

Lquation (19b) for 12 is the well-known transport equation for isotropic
scattering. The scatter cross section per volume which appears in this equation -
is determined by the isotropic background of the phase function and is given by
(1—-11)05.
equation.

This modification does not change the mathematical character of the

A number of solution methods for the isotropic tramnsport equation are avail-
able in the literature; sece, for example, References [(3-6]. Numerous additional
references can be found in [3]. In the present paper we use a moment method ap-
proach (6] which expands the p-dependence of l2 into a series of overlapping tri- )
angular basis functicns. These functions,Fn(xL are dofined as indicated in Fig. 5. e
The range -1 ~ p < + 1 is subdivided into N intervals

Hpop S0 Sy n=1,2 w N (27a)
where N is assumed to be odd and My is defined by -
b, = cos (1- %)n = - ¢o N o, n=0,1,2 . N (27b) t
Thus:
‘ 0 for -1 <4« Mae1
! , =
" jﬁ'tl Hyap S iy, Z‘f;}-
B )= MneyTH (28a) :3”53‘
(TR My S0 2 na ]
. 0 Mg 50
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The “"boundary" functions Fo(x) and FN(x) have the shape of half-triangles and are

defined by
" upem
:‘ ‘u-l'_q for -1 < | f_ “1
_ £
Fo(u ) Lcwen (28b)
" | (0
o) TENENL e
= c
N*H 1w .
_ ST My_p S kst
: T-uy g N-1 = =
[ . e . . .
: Expansion of the specific intensity 12 into the functions Fn(“) yields
: . _ N 2
{ Ltw) = a (®) Fn(u) (29a)
o
- where the expar ion coefficients
an(r) = I2 (t;un) 0,1,2 «. N (29a)
are the values of I2 at u = u,- In other words, Equation (29a) replaces I2 by a - 4

piecewise linear approximation in u, which is exact at the points u = My

With Equation (29a), the transport equation (19b) reduces to a system of
coupled differential equations of the first order in %

da N -1
__n__ = g_ . 9.. - W
n os7 ¥ 4 " 7 ﬁzo(pkak)+ 4y Spe J (30a)
E
n=20.1, .. N -
where EQ3S
1 in (T) sin (UK
7{pk¥l_ pk_1)= sin (N) sin N) _é
+1 Toa
P - Jf F ol = for k = 1,2, -.N-1 (30b) :
‘1 e
.2 O
%— (1+y) = % (1-uy_q) = sin (=x) T
for k = O,N '

21




‘-

y
2

We have assumed, furthermore, that the direction-cosine u_ of the incident
plane wave coincides with one of the u values (n = j); for normal incidence, in
particular, we have j = N. Equations (30), a 1inear system of coupled differential
equations of the first order, can be solved by assuming an exponential T-dependence
of 3 It is straightfoward to show that the general solution takes the form:

_ A I
) N A 5
S e Hj k k
oL W P 8.ty ———e 1
a, (7) 5 { N ko . M
P. 1- ¢
J k
(31)
n=0,1,2 N
1 forn = j
8
J 0 n# j

The first term within the parentheses is a particular solution of the inhcmo-
genecus equation, the sum term is the general solution of the homogeneous equation.
The coefficients An are unknown amplitudes which have to be determined from the

boundary conditicns, The attenuation coefficients Sk are solutions of the char-
acteristic equation

n_ .
o = 1 (32)

which has to he solved numerically. Useful insight into the general behavior of
the Sk spectrum can be gained by plotting the Jeft side of Equation (32) as a
function of S. From Equations (27b) and (30b), it can be seen that

= 1 p = p
“N-n Iy o "N-n Pn
and the left side of Equation (32). L(s), is symmetric in S. The same is true, of

course, for the right side R(S) = 1.

In Fig. 6, L{S) is sketched for N = 9. The function has N + 1 poles,
located at the points S = p . In the regions between adjacent poles L(S) varies
from - to +e. (The only exception is the interval between the two poles closest
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to S = 0.) Therefore, L(S) crosses R(S) = 1 N-1 times between -1 < S < 1. Further-
more, for S + + =, we have*

P =W

L(S) » n

t

N x>
It =

=0

"Since W < 1, L(S) intersects the line R(S) = +1 twice for |S|> 1. Fig. 6
indicates the N+1 solutions Sk of Equation (32) which are distributed symmetri-
cally about the point S = 0. Counting these solutions in order of ascending value,
the first E%l eigenvalues, So ------ SN-I, ar2 negative and would lead to a specific

9
intensity which increases exponentislly with T. The boundary condition at 7 - =
eliminates solutions of this type. The remaining Ntl solutions, S

positive and lead to physically meaningful results. 2

Fig. 6 shows that all Sk have magnitudes smaller than unity except for the
largest eigenvalue SN which is »1 and provides the lowest attenuation rate. The
associated term in Equation (31) is of particular interest since it determines the
asymptotic behavior of I2 at large distances into the scatter medium,

The number of eigenvalues Sk within the range 0 f_S < 1 increases with N,
the order of the approximation. For Ns«, the Sk form a continuous spectrum
covering the entire range from 0 to 1. The eigenvalue SN’ however, remains dis-
crete and for N - « approaches a limiting value Sa>- 1 which will be further dis-
cussed below. Numerical evaluations have shown that if N is reasonably large (21
or greater), SN approximates Sa closely and does not vary significantly as N is
further increased.

As stated before, the boundary condition at T+w eliminates all expansion
terms in Equation (31) associated with negative eigenvalues Sk' We have

A =0 for k = 0,1 = N

K ) (33a)

5

The remaining amplitudes AN+1 ...... AN are determined by the boundary condition at

2
T = 0. By applying Equation (21b) to Equations (29) and (31) the following system

*From Fig. 5, it is easy to see that § Flu) =1 for -1 <y <+l
n=o
+1
N [N
Hence r P = g F(w)du-= 2.
n=o n=o

.
e T
[ i
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of Tinear equations is obtained for these amplitudes:
N

P A 5

‘N X = N+1

k=mp= 1oy pE form= S e N (23b)
5

This system has to be solved by computer. With the Ak and Sk determined, the
solution for I2 takes the final form

s -
" N K F ()
Lo =% t-e o Bl w5 rae i gy (34)
2 P. k=—5— 1- Hn
J 2 <
k

for T>0,-1<p<+l

. = CO0S =
Hj % = Wy

It is instructive to examine the behavior of 12 at small and very large T.
For small 7, 12 can be approximated by

I 4
U
P u
_ - e
{—il—_—i—-—— for 0 <u =cos 6<1
: U
~ S ~ p
L, (tsu) ~ “pW-< z (35)
m ) -i-—
I e p__
L 1 -y -l<u=cos9 <0
Hp

This so-called first order multiple scattering approximation is obtained if
Equation (19b) is solved with the integral term on the right side suppressed [3].
Equation (35) shows that 12 is zero at the air-forest interface for 0 < 9 < =, as

-2

required by boundary condition (21b). As 7 is increased, I2 at first increases
linearly  with distance (12 is generated by scattering of the coherent field com-
ponent I”. in this region) but then reaches a maximum and decreases again because
of absorption in the scatter medium. At very large distances, 12 is determined

by the asymptotic solution [3]:
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o lf-n

f. () e for -+ » (36a)

-1 <u=cos 0 <+1

where
fam) = %L (36b)
Sa-u
and Sa is determined by the equation
N Sa+1
W Sa En('s’—_'l—) =1 (36C)
2 a

The quantities Sa’ and fa are shown in Figs. 7 and 8 as functions cf W. Tbe
asymptotic amplitude Aa depends on the boundary conditions and is plotted versus W
in Fig. 9 for the conditions shown in Equation (21b). The figures show that in a
strongly scattering medium with W close to unity, the asymptotic attenuation rate
l/Sa is low, the amplitude Aa is substantial, and the directional spectrum fa is
wide. Experimental results indicate that the forest environment has these char-
acteristics and is a strongly scattering medium at mm-wave lengths. In Appendix C
it is shown that the expansion term in Equation (34) associated with the largest

eigenvalue SN converges towards Equations {36) as N -+ =,

A final remark is concerned with backscattering out of the forest medium
into the air halfspace. HWhile Iri is zero and 11 is negligible in the range of
the backscatter directions -1 < p = cos 8 < 0, I, is different from zero in this
range, Backscatter into the air halfspace is determined by the u-spectrum of 12
at T = 0., With Equation (35), we have

IZ(O;u) = Ep_ _ji_" for -1 <y =cos 0<Q
. 1-y
%

Apparently, side scatter (¢ = 90°) is moderately stronger than direct back-
scatter (@ = 180%). Note that the backscatter radiation is generated by the
(isotropic) scattering within the forest medium; but it is not caused by reflection
of the incident energy at the air-to-forest interface (which is insignificant). It
is a volume rather than a surface effect.
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4. Power Received by Highly Directive Antenna

The present theory assumes that the forest halfspace is illuminated by a
plane wave incident from the air halfspace. This situation can be approximated by
locating the transmit antenna at a sufficiently large distance from the edge of
the forest. We assume, furthermore, that the receive antenna, which is located in-
side the vegetated area, is a highly directive antenna of narrow beanwidth. This
is in accordance with the experiments to which the thecry will be compared in the
next section. We characterize the receiving antenna by its power radiation pattern
GR (YR) wheve YR is the angle which the direction of observation 6,4 includes with
the pointing direction of the antenna axis © ¢R (main beam direction): see Fig.
10. Evidently

Ri

cos Yp = cos (¢-¢R) sin 0 sin OR + cos O cos OR (37a)
We normalize GR such that

2nn
P

| JfGR(yR) sino dodp = 4n (37b)
0O 0

The directivity gain of the antenna is then given by GR(O). The power PR

received by the antenna is determinad from the well-known relation Aeff = ;§ G for
11
the effective receiving ¢cross section of a perfectly matched antenna of directivity

G. Thus
s on +
P.{T; H,, 9,) S Jfl
; s =_0 / . )
R R* R i g ] GR(YR) I (T u,¢) dudd (38)

where AO is the wavelength. We have used here the normalized coordinates

T = (oA + os) Z, up = cos Oy and j = cos 0. PR‘ of course, depends on the location
and orientation of the antenna.

From the analytical viewpoint, it is convenient to assume a Gaussian
radiation pattern

v (39)

where AyR is the beamwidth of the antenna. The receive antennas used
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| »
in the experiments had a very small beanwidth of 1.2° and we shal! assume in the ‘ \
numerical evaluation that the width of the forward scatter lobe of the phase
function of the medium, AYS‘ exceeds AYR by a factor of 3-10. (The aperture size o 44
of the test antennas was significantly larger than the cross section of most scat- » ;
ter objects in a forest environment with the exception, perhaps of tree trunks.)

Using Equations (12), (26) and (34) for Iri and 12’ respectively, we obtain
for the received power

p (T;}l s ) YRp C ‘
...B......p.__R..——B... = exp {.. (E..._)z . o } ' ..
Max YR ¥p T
A 2 . . o
] YR Hp [ e
l + T{[e - e ]Q”(YRP) » 1
T M m (40a)
- = 1 (oW - -
re UP 1 m‘ (TJ—;T) [qm(YPR)_qlstpR)]]
A R
. L - %.Z \ﬁ.{ F(ug)
1 e
LR P Filig) 4 )N+1[Ake 2Ty h
P\j k=~-~§-— n=0 Sk
__YeE
2 2
' ~ : ) ] AYR + m/\YS (00
where —p—— @
qm YpR A 4 + mA 2
YR S
- 2 2y %
COS ypp = €OS (‘bp"bk)[(l‘llp)(l‘uk)] t upug (40c)
We have normalized the received power by division with the maximum power RS,
pmax which is received if the antenna is placed at the forest boundary v = 0 and »
is aligned with the incident radiation, i.e., Gp = 0y, ¢p = ¢, Evidently ".i-'-'
Aoz AO?‘ , 2
b) = p . PO A SRR Sy L N
Puax ™ Pal0s petp) = GrUOSp = 3y (R %y, T
’

The first term on the right side of Equation (40a) is the contribution of Ly
to the received power, the second and third terms are those due to I1 and 12. The
integrals occuring in the contribution of I1 have been evaluated by using Equation
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(B.6), and the integrals in the term due to 12 were solved by regarding GR as a
§-function., This is justified since 12 is$ independent of ¢ and changes very slowly
with it as compared to GR. The normalized variables are defined by Equations (20).

At simall distances into the random medium, for ¢ in the order of 3 or smaller,

the coherent field component domingtes ana PR/P
by the first term of Equation (40):

max is in good approximation given
Kt/

S (PRyZ s
Pr AL LN P a1
s e e = Gplvpp) e (41)
max 'EEIO)

In this region, the angular dependence of PR is determined by the radiation
pattern of the receiving antennas and the attenuation rate t/7 = o + 0g is com-

paratively nigh. Both attenuation and scatter reduce the power of coherent com-
ponent,

In the range of intermediate distances (t in the order of 10), the forward
scattered component l1 dominates and PR is primarily determined by the second terw
in tquation (4G). In this region, the beamwidth gradually broaaens as higher and
higher terms in the sum over M become significant while the attenuation rate de-
creases from /7 = op tog to /7 = o * (1-«) Og. Il 1S attenuated due to ab-
sorption and scatiering, but scattering into the isotropic background only.

At large 1, the received power is primarily determined by the contribution

of 12, i.e., by the last term in Equation (40). Asymptotically, PR is with Equa-
tion (36a) given by

T
, TS .
,PB. = 2y folu) e & for v (42)
plllClX WO)

Ay fa(u) and l/Sa are shown in Figs. / to 9 as functions of W. For large
W 1, the practically interesting case, the directional spectrum is broad and
175, is smail so that the asymptotic attenuation rate f/(Z-Sa) = (uA + (l»n)os)/Sa
1s significantly reduced from the initial value of op * Ug. The intensity I, de-
creases essentially due to absorption only (though over an extended path length
because of multiple scattering); but it scatters into itself.

In summary: While a nm wave beam transmitted through a forest will be highly
directive and strongly attenuated at short distances, t will transform into a
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radiation field of large beawidth attenuated at a much reduced rate at large dis-
tances. These theovetical predictions are in agreement with expectation and have
been confivmed by the experiments.

A similar range dependence in woods and forests, i.e., & transition from a
high attenuation rate at short distances to a much Tower rate at large distances
has also been observed at much lower frequencies, i.e., for propagation of VHF
signals through dense vegetation (jungles). The underlying mechanism, however,
is completely different. The change of attenuation rate of VHF signals is attrib-
uted to the so-called up-over-down propagation mechanism where a lateral wave is
excited which travels along the horizontal boundary surface between the forest
canopy and the air region above it (Tamir theory). Since this wave propagates
mostly in the air region, it is much less attenuated than the direct-wave travel-
1ing through the forest medium,

However, the lateral wave has a substantial launching loss. Hence, at short
distances, the power transfer betweern two antennas located in the jungle is deter-
mined by the direct wave and the attenuation increases rapidly with antenna
spacing. At large distances, on the other hand, the lateral wave will dominate
and the attenuation rate is significantly reduced. Note that the effect is deter-
mined by the coherent field component alone while the incoherent component is
negligible at wavelengths in the VHF region. In contrast, in the nm-wave region,
the incoherent component is significant in forests, and, as explained above, will
dominate at large distances. The decreasing attenuation rate is caused by the
interplay between this component and the more strongly attenuated coherent compo-
nent. A lateral wave supported by the canopy-to-air interface should not be ex-
pected at mm~wave lenqth. The interface is extremely rough in the wm scale.
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ITI. NUMERICAL EVALUATION

A computeir program for the evaluation of Equation (40) has been written.
While the first and second terms of this equation (which represent the cortribution
of Iri and11) appear in explicit form, the third term contains the eigenvalues Sk
and amplitudes Ak of 12, which have to be determined by numericcl solution of the
characteristic Equation (32) and the linear system (33t), respectively. A null
finding procedure and a matrix inversion subroutine for the solution of these

equations are included in the program.

Numerical results are shown in Figs. 11 through 20. Table 1 summarizes the
parameter values applying to the various curves. Throughout it is assumed that the
receiving antenna has the same 3 dB beamwidth of 1.2° as the antenra used in the
experimental study, which means that*

Nrg = 0.7° = 0.012 rad

Furthermore, we assume that the 3 dB width of the forward scatter lobe of the
phase function of the scatter medium is 60, or

Ayg = 3.5% = 0.060 rad
The quantity Q appearing in the figures is the normalized received power expressed
in dB, i.e., p

, R
Q= 10 1g(™ )
max

The distance intc the forest halfspace is expressed in terms of the normalized
vegetation depth 1 = (OA + os)Z as measured from the air-to-forest interface; 1 is
sometimes referred to as "optical distance."

Figs. 11-13 show the renge dependence of the received power, i.e., Q = Q{1)
for various values of W and . It is assumed here that the primary plane wave is
incident normal to the air-to-forest interface (plane Z = 0) and that the receive
antenna is pointed into the direction of this wave; thus, ep = eR = 0. The curves
demonstrate the change in attenuation rate from a high value at small t to a lower
value at l.rge t. The effect is pronounced, in particular, for strongly scatter-
ing media with oy >>0p where the albedo W is close to unity. Increasing o, the

*Ayp 1s the angle counted from the antenna axis at which the mainlobe of the power
raﬁiation pattern of the antenna is down by a factor 1/e; see Equation (39).

This angle is velated to the 3 dB beamwidth of the antenna by A_, = 0.6 A .

) . C e . YR Y3dB

'ys 18 similarily defined.

35 (text continues on page 50)
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ratio of the forward scattered power to the total scattered power, has a similar
effect, which is easy to understand since the attenuation rates of the field inten-
sity components I1 and 12, which dominate at large T, are proportional to (1-aW)
in this region.

Typically, for W = 0.75 and o = 0.8, the coherent field component Iri pro-
vides the dominant contribution to the received power in the range 0 < v < 7,
while I1 is the dominant component in the range 7 < t < 50, and 12 in the range
© >50. If W is increased, i.e., for W = 0.95, a = 0.8, the changeover occurs
earlier, i.e., at t = 5 rather than 7, and 30 rather than 50.

The curves Q = Q(SR) cf Figs. 14 to 18 show the dependence of the received
power on the pointing direction of the receiving antenna. It is assumed here that
the antenna is placed at various vegetation depths T where it performs a full 360° .
scan. As before, it is assumed that the primary plane wave is normally incident ji’i'?
upon the air-to-forest interface. In this case, Q depends on OR only but is inde- a
pendent of ¢p. Figs. 14b, 16b and 18b show Q (eR) in an expanded @p-scale.

, RN

For 1 = 0, when the receiving antenna is positioned in the interface plane,
the curves Q (SR) show the Gaussian radiation pattern of the receiving antenna.
(The incident field, in this case, is an unperturbed plane wave.) This holds for
the two forward quadrants O <0 = 90° and 270° < OR < 360°. In the range of back-
ward directions, 90° h 0R<3 270%, the antenna receives the backscatter radiation
emerging from the forest. The figures show that this backscatter radiation has a
rather uniform directional distribution with sidescatter moderately higher than
diréct backscatter, i.e.,

u
o

o (1) = a3 2 a(n) for v

As T is increased, beam broadening occurs. Foir small T = 0.1 and 0.3, the

coherent component remains dominant, as indicated by the narrow spike about GR = (. ; T
But the incoherent component produces a broad tail consisting of a peak of mederate
height and width extending to about UR = 109, and a very broad back scatter spectrum.
The peak is determined by I1 and the background by 12. I1 depends on AYS’ the

width of the forward lobe of the phase function; if AY

S vould be increased from 3.5C,
the value assumed here, to 7°, the peak corresponding to I1 would decrease in
height by 6 dB and increase in width to about OR =20% For s = 3 the coherent com-
ponent is still clearly visible, but for v = 10 it has all but disappeared within
the incoherent component. At 1 = 30, (Fig. 18), the incoherent comporent has
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taken over completely, the signal level has dropped significantly, and the beam has
broadened out substantially.

For 22 < OR < 90°, i.e., in the range of forward directions away from the
spike of the coherent component, the received power level  first increases with T,
up to about t = 3, and then decreases again. This is explained by the fact that
the incoherent component, which determines the received power in this 6-region, is
generated by the scattering of the coherent component in the range of small T, but,
after reaching a maximum, decreases again because of absorption. The maximum
occurs near T = 1-(1-oW) = 1 which roughly corresponds to T = 3 for most of the o
and W values considered here.

The receiving antenna assumed here is an idealized antenna radiating a narrow
mainbeam but no sidelobes. Practical antennas produce sidelobes and the measured
directional spectrum Q (BH) will be influenced by the sidelobe structure of the
test antenna. It is likely that such distortions will obscure some of the details
of the directional spectrum of Il and 12; in particular, those at a level of more
than 30 or 40 dB below the main peak.

Figs. 19 and 20 show the range dependence and directioral spectrum of the re-
ceived power for the case that the primary wave is incident under an oblique angle,
i.e., 8, = 45°, ¢p = 0. In calculating the range dependence curves of Fig. 19, it
vias assumed that the receiving antenna is pointed into the direction of the inci-
dent wave such that OR = 450, bp = 0.* The figures show the same general benavior
of 0, the normalized received power, as those for normal incidence, with the ex-
ception that in Fig. 20 the maximum of the received power occurs at eR = 459 rather
than 0°. A second difference may be seen by comparison of Figs. 19 and 12, which
show the range dependence of (, at oblique and normal incidence, for the same
values of oo and ¥. For W = 0.5, when absorption is strong, the attenuation rate
for oblique incidence is significantly above that for normal incidence. This is
due to the fact that in the case of ohlique incidence the wave trains received at
a given point 1t in the medium have traveled a path which, in effect, is by a factor
(cos UP)_l longer than in the case of normal incidence. Hence, the attenuation is
that accumulated over a longer path. (Note that the receive antenna is a narrow
beam antenna pointed into the direction eR = Gp so that it receives primarily for-
ward scatterved wave trains.) The effect is ciearly visible in the T-range where
the "directive" field components Iri and I1 dominate, but it leveis off in the

*The curves 1in Fig. 19 snould start at Q = 0 dB for T = 0. The deviation is due to
a computational quantization error.
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range of very large T where 12 is the strongest field component. 12 propagates by
omnidirectional scattering and its magnitude at any point t is primarily determined
by the constituent wave trains having traveled along the shortest paths, i.e.,
along those directed normally into the forest medium. (But the directional spec-

trum of 12 is very broad so that the received power does not depend significantly
on antenna peinting.)

IV.  EXPERIMENTS

Systematic test series on mm-wave propagation in woods and forests were con-
ducted by Violette, Espeland, et al.* Detailed reports on these studies have been

pubiished recently {1, 2]. The following discussion draws strongly from these
reports.

1. Description of Experiments

The experiments were conducted at three frequencies simultaneously, i.e., at
9.6, 28.8 and 57.6 GHz. The first of these frequencies is at X-band; the two remain-
ing frequencies are close to the 35 and 60 GHz bands which are primarily of inter-
est in tactical communication. The transmit antennas have a comparatively hroad
beamwidth of 10° and provide wide angle illumination of the test area. The re-
ceiving antennas have narrow beamwidth, i.e., 4° at X-band and 1.2° at the two mm-
wave frequencies. In the numerical evaluation of the theory, the 1.2° bearwidth
was assumed for the receive antenna.

The antennas are linearily polarized and in the experiments of interest here
were operated in co-polarization. The experiments have shown thzt at mm-wave
frequencies, the propagation conditions in vegetation are practically the same for
vertical and horizontal polarization so that the direction of polarization is of no
consequence. This was also assumed in the theory. There is, however, the follow-
ing difference. The theory is based on the scalar transport equation which means
that the received power is obtained as the total power intercepted from both the
co-polarized and cross-polarized field components. In the experiments, which util-
ize linearily polarized antennas, only the copolarized component contributes to
the received power. Cross-polarization experiments have shown, however, that over
the distances considered here, mn-wave beams do not become fully depolarized in
vegetation and that the cross-polarized component remains several dB below the co-
polarized component. Hence, errors due to this discrepancy of theory and experi-

ments should not exceed 1-2 dB.
*The investigators are with NTIA/1TS, US Dept. of Commerce, Boulder, CO. The ex-

periments were performed under contract with the US Army Communications-Electron-
ics Command, Fort Monmouth, NJ.




Normally, the vegetation density in a forest will change strongly with lo-
cation and is difficult to characterize. To eliminate this uncertainty, the experi-
ments were conducted in a regularly planted, well-groomed orchard of pecan trees
(near Wichita Falls, TX) which should approximate a statistically homogeneous vege-
tation medium - as far as this is possible. The trees in this orchard were of
roughly equal growth they were planted in a regular square pattern spaced about
13 m apart, and individual trees had a height of approximately 10 m. Maximum vege-
tation density occured in the canopy region between 4 and 6 m above ground. The
experiments were conducted both under summer and winter conditions, i.e., with
trees in leaf and without leaves. Fig. 21 shows the test site in early April and
late August when the experiments were conducted.

The experiments which are of interest in the context of the present paper
can be described with the help of Fig. 22. The black circles in this figure indi-
cate some of the trees. The transmit antenna was located at or near the point T3A
outside the orchard at a distance of ~300 m from the first row of trees. The re-
ceive antenna was located within the orchard and was moved to various locations R3,
R4, R5, etc., as indicated in the figure. In each case, the receive antenna was
positioned at the same height as the transmit antenna, and the line-of-sight follow-
ed a path of maximum vegetation density through one column of trees. The measure-
ments were taken at three different heights above ground, i.e., at 1 m, 4 m, and
6 m. The 4 and 6 m experiments are primarily of interest here. At each receiver
position and height, the receive antenna was first pointed towards the transmit
antenna so that its main beam direction coincided with the 1ine-of-sight. The
receive antenna then performed a scan in azimuth by 1150 and in elevation by 1}00.
The quantity measured was the received power at constant transmit power.

2. Experimental Results

Results applicable to this paper are shown in Figs, 23 to 26. In the first
two figures, the range dependence of the received power is plotted. The quantity
shown is the maximum of the received power observed during the azimuth and ele-
vation scans. The power is normalized to 0 dB at the edge of the orchard. Fur-
thermore, free-space path losses (R'2 dependence) and atmospheric attenuation {at
57.6 GHz) have been subtracted so that the curves show the vegetation loss only.
Because of this normalization, comparison with the theoretical results based on
the assumption of an incident plane wave seems appropriate. The abscissa scale
shows the number of trees on the line-of-sight; this number multiplied by the

tree spacing of 13 m yields the vegetation deptr in meters. The solid curves

53 (text continues on page 58)
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show the summer data, the dashed curves the winter data. Apparently, leaves have a
strong effect on nm-wave attenuation. As one shouid expect, the attenuation in-
creases with frequency though the effect is not dramatic in the mm-wave region. It
is evident that the experimental results confirm the theoretical prediction that )
the mm-wave attenuation rate in woods decreases from a high value at small vege- :
tation depths to a much smaller value at large depth; the transition between these
two regions appears to be rather sharp.

Figs. 25 and 26 show the received power as a function of the azimuth and ele- !
vation scan angles. The light traces indicate the power received in free space,
i.e., the radiation pattern of the receive antenna. The figures apply to trees
without leaves, but very similar curves were recorded for trees with leaves,
Again, good qualitative agreement with theoretical predictions is observed. For Lo
short distances into the orchard, i.e., at vegetation depths of one and three e
trees, the presence of the cohere..t component is evident by the narrow peak of the
scan pattern. At larger vegetation depths, corresponding to propagation paths
through eight and eleven trees, the coherent component has disappeared within the
incoherent component which dominates the received power, resulting in a reduced

amplitude and substantial beam broadening.

The scintillations in the curves of Figs. 25 and 26 are interference effects
(fadings); the exact locations of the maxima and minima should vary rapidly with ¢
antenna position so that, in an averaged curve, these fluctuations will disappear.
Since transport theory neglects interference effects, the corresponding theoretical
curves of Figs. 14 to 18 are smooth.

3. Comparison of Theory and Cxperiments MG
Theoretical and experimental results show the same general trends and are in '
good qualitative agreement. One may now try to establish quantitative agreement

by choosing the numerical values of the four theoretical parameters AyS' op» O
and a, such that a "best fit" of the calculated curves to the measured curves is
achieved. At the same time, this procedure would yield order of magnitude esti-
mates for the four parameters. The procedure, however, is not without difficulties
and, as will become apparent from the discussion below, the presently available
experimental data base is not sufficiently large to arrive at definite conclusions.
It should be understood, also, that the comparison of theory and experiments in-
volves a certain amount of conjecturing since the measured curves, as opposed to
the smooth theoretical curves, show a significant amount of fluctuation. Moreover,
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the comparison has to be regarded with caution since the theoretical model contains
a priori assumptions and strong simplifications and is not identical with the ex-
perimental set-up. In particular, the theoretical model applies to a forest half-
space illuminated by a plane wave, while in actuality the incident beam has a
finite cross section and the trees have a finite height so that losses occur due «:{f
to radiation into the ground and into the air region above the fovest canopy; such NR
losses are not accounted for in the theory.

In the following, a critical assessnent is attempted in how far each of the
four theoretical parameters can be determined from the experimental data. For the
purpose of this assessment, the parameters are rewritten in the form A'S, op =
op * ugs W= oS/(oA + 05), and a.

(1) The width AYS of the forward lobe of the phase function determines the
(changing) beanwidth and amplitude of the Il-component of the incoherent intensity,
and would have to be determined from the experimental curves of Figs. 25 and 26.
But these curves are not in a form to facilitate comparison with theoretical data
and no attempt is made here to specify AYS from this datu. For che following dis-
cussion, A S is not a critical quantity and we shall assume, as in the theoretical
curves of Figs. 14 to 18, that the forward lobe of the phase function has a 3 dB
beamwidth of 6°, though this value may be rather small.

(2) The extinction cross section ot determines the attenuation rate at short -
distances into the random wedium where the coherent component dominates. With
Equation (40), we have in this range:

S O
PR/ Ppax = ¢ = NS
In accordance with the experimental situation, we have assumed here that RN
Op = up = 0. The relation permits one to determine oy from the measured range :
dependence curves of Figs. 23 and 24. Recalling that the tree spacing is x13 m,
one finds Tl
L0l for trees in leaf IS
op % 0p v og T " (43a)
10.25m for trees without leaves




These values correspond to the steep initial part of the experimental curves
and are typical for both mm-wave frequencies (28.8 and 57.6 GHz) and both heights
above ground @ m and 6 m). However, these values appear to be very high. Since,
in a forest, all scatter objects are large compared to a wm wavelength, oy should
be close to the high frequency Yimit, whichis obtained forxod 0. In this limit, the
extinction cross section approaches the obstruction cross section per volume of
the random medium. Thus, according to Equation (43a), trees in leaf would obstruct
~40% of the planar field of view for any meter of vegetation depth., and trees with-
out leaves would lead to a 25¢ obstruction per meter. Although values of this mag-

nitude may occur locally, it is very unlikely that they can be regarded as repre-
sentative,

A possible expianation for these large oy values can be derived from the
fact that in a forest eavironment all scatter objects are large compared to a mm
wavelength. Behind large obstructions such as strong branches, deep shadow will
exist* and since the measurements were pe: formed over a path through maximum vege-
tation density, it is very likely that the receiving antenna was operating within
such shadow zones. The measured date may thus indicate a higher value for ar than

one would obtain in the average, i.e., by performing similar experiments over a
number of parallel, laterally offset vegetation paths (including the waximum den-
sity path) and by averaging the powers received aver these paths. In transport
theory, which neglects interference effects. this averaging process is implied.

At large vegetation depths, on the other hand, deep shadow zones are not ex-
pected to exist since the incoherent (muitiscattered) component is well developed
in lhis region and will "fi1l in" any potential shadow zones. Hence, it should
be vossible to achieve good agreament between the experimental and theoretical
range dependencies at large t.

Since the above values for UT appear to be very much on the high side,
curve fitting of the theoretical and experimental range dependence curves was
attempted not only for thesc 0. values but for moderately and strongly reduced
vahmsof(ﬁ as well, i.e., for

1

0.3 m” for trees in leaf

T K -1 (43b)
L0.?. m for trees without leaves
*Mote that we are concerned here with the range of small vegetation depths where
the coherent (highly divectional) component dominates and the incoherent com-
ponent, is not as yeo significantiy developed.
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and
f 0.1m! for trees in leaf
op = 4 (43b)
~ 0.05 m ! for trees without leaves
L

Using these values, reasonable agreement should be achievable at moderate and
Jarge distances into woods. At short distances, discrepancies are unavoidable,
since the assumed theoretical attenuation rate of the coherent componer differs
from the measured rate.

(3) The albedo W and the ratio a of the forward scattered power to the
total scattered power were adjusted to obtain reasonable overall agreement of the
calculated and measured range dependence curves. Agreement was established simply
by trial and inspection. Figs. 27 and 28 show the results for the 01 values of
Equations (43a) and (43b), respectively. In these figures the received power in
dB (veqgetation loss) is plotted as a function of the normalized distance T = oTZ.
The solid lines show the theoretical curves; the experimental curves (dashed lines)
are those of Fig. 23 applying to a propagation path at a height of 4 m above ground.

At large 1, good overall agreement ' ~tween the theoretical and experimental
range dependence is obtained in particu... in Fig. 28. At small t, the agreement
is reasonable for trees without leaves; for trees with leaves. the measured vege-
tation loss is significantly higher than the theoretical loss, in particular near
the sharp bend of the experimental curve,

Both figures indicate that the parameters W and a must be chosen close to
unity to achieve reasonable agreement, i.e.,

W, a = 0.9100.65.

For the small o, values of Equation (43b), conclusive results were difficult

to obtain since the r;nge of smal T, where significant deviations between the
theoretical and experimenta’l curves occur, is now extended and the range of large
1, where good agreement can be achieved in principle, is correspondingly reduced.
However, it appears that, in this case, the conditions on W and o are somewhat re-
laxed leading to values of 0.8 t00.95 for W and 0.6 t00.9 for a (where the larger

W values correspond to the smaller o values and vice versa).

It is evident that these results are preliminary and do not lead to definite
conclusions concerning the numerical values to be assigned to the four theoreticai
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FIGURE 27: Comparison of Theoretical and Experimental Range Dependence

The experimental curves are those of Fig. 23 and apply to a transmission
path at 4 m height. In the theoretical curves, the parameters W and o
were adjusted for good agreement with the experimental curves. The ab-
cissa scale refers to the normalized vegetation depth t© = 91Z where it is
assumed that o7 = 0.4 m~1 for trees in leave and o7 = 0.25 m-1 for trees
without Teaves
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Same conditions as in Figur: 27 except that o7 = O.3m'l for
trees in leaf and o1 = 0.2m"1 for trees without leaves.
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parameters, It appears, however, that both a and W should not be too far away from
unity which would indicate that forward scattering is a significant effect for mm-

wave propagation in woods and forests, and that scattering exceeds absorption by a
substantial margin.

V.  CONCLUSIONS

A theoretical approach for the study of mm-wave propagatica in woods and for-
est has been derived and compared to experimental data obtaived by an independent
investigation [1, 2]. The theory models the vegetation environment as a statisti-
cally homogeneous random medium of scatterers characterized by a scatter function
(phase function) with a narrow forward lobe and an isotropic background. The scalar
transport equation has been used to determine both the coherent and the incoherent
field intensities in this medium; the particular problem solved is that of a vege-
tation halfspace illuminated by a plane wave incident from the air halfspace. The
propagation and scatter properties of the vegetation medium are characterized by
four parameters which, in principle, can be determined by a comparison of theoreti-
cal and experimental results. Numerical evaluations have provided information on
the range dependence of mm-waves in woods and forests, and on beam broadening
effects.

Comparison with measured data has shown good qualitative agreement between
theory and experiments. Both indicate that the attenuation rate of wmm waves in
woods and forests decreases from a high value at small distances into the medium
to a lower value at large distances, and that significant beam broadening occurs,
resulting in a very broad beamwidth at large vegetation depths. Reasonably good
quantitative agreement between experimental and theoretical results can be estab-
lished at large vegetation depths (by appropriate adjustment of the parameters of
the theoretical model). But the experimental data indicates a higher attenuation
rate at shcrt distances into woods than can be accommodated by the present theory.
The comparison between theory and experiments has not yielded conclusive quanti-
tative results at the present stage; but it indicates that the forest environment
at mm wavelength is a strongly scattering medium whose scatter cross section per
volume substantially exceeds the absorption cross section and that strong forward
scattering occurs, which is expected since all scatter objects have Tlarge dimen-
sions compared to a mu wavelength.

i stuuy 1< needed in the following areas:




(1) The very high attenuation rate measured at short distances into woods
and the rather sharp transition to a region of lower attenuation rate, which
occurs after transmission through a few trees, requires explanation.

(2) More conclusive (experimental or theoretical) information is needed on
ff the numerical values to be assigned to the four (averaged) parameters by which the
o theory characterizes the forest environment at mm wavelength. These parameters in-

clude the scatter cross section per volume, the absorption cross section per volume,
the width of the forward lobe of the scatter characteristic (phase function), and it
the ratio of the forward scattered power to the total scattered power. In more o
general terms, the characterization of the forest environment at mm wavelengths by
a set of suitably defined, measurable electrical parameters is a very important,

JRTOTRE ™

but up to now, unresolved problem. The theory presented here is a first attempt g
in this direction. 3

(3) The present theory deals with the simple model of a forest halfspace 'f
with a planar boundary surface illuminated by a plane wave. A more realistic model —ar
would replace the forest halfspace by a two-layer horizontal slab model over a ?,;ﬁ

ground plane with suitably defined absorption and scattering properties. The model
is indicated in Fig. 29. Furthermore, a vector transport equation formulation of
the problem is needed if depolarization effects of mim waves in forests are to be
included in the theory. Analytical/numerical difficulties in treating a model of
jﬂ this type, however, may be formidable.
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APPENDIX_A

Energy Density Associated with 11.

The integral

21 W

v, (2) - fJ." 1,(2:6,¢) sin@ d o d g (A.1)
0o

which appears on the right side of Equation (16b) can be evaluated in closed form.
We use Equation (16a) and verform an integration in 0,4 {over @ = &) on both
sides. This leads to the following difterential equation for U1 (2):

%,
Uy cos Gp (A.2)
cos ep~377+ (OA + (1-a)os)ll1 = aog Sp e EQ
We have made use here of the relation iif
Sl

2r n -

1 . .
i JP Jr qly) sinododéd =1
0 0

which follows from Equations (4) and (14a), and have replaced the factor cos 8 on
the right side of Equation (16a) by cos ep. The approximation is discussed in the o
main text.

Equation (A.2), a linear differential eauation of first order, can be solved :
in closed form. MWith the boundary condition U1U» = 0 which takes into account foT

that I; (0; 6,¢)is zero in the range of forward directions, 0 < 6 < g-(see Equa- - 73
tion (2la)), and negligible in the range of backward radiation, %-3 0 <m, we o :
obtain: jfjﬁj
e

o, + (l-a)o o, + 0O
_ A S A S - A
Ul(Z) = Sp { exp (- cos é-’g Z)-exp (- os © )} (1\3) . 1

As a final remark, we nnte that Ul(Z) is proportional to the energy density
associated with the specific intensity Il'
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APPENDIX B

Solution of Recursion Relation for 11.

The coefficients by (9.4) of the specific intensity I1 are determined by the

. recursion relations (Equations {23) of main text}):
S .
by (0,4) = z& C;-)‘—;H‘O—‘; - alyy) (B.1)
2r m
by (0.¢) = '41,; ‘_(')ES‘H‘@; %{ J j‘G(Y) bm_l(e’.¢’) sind do d¢” (8.2)
0 o0

m=2,3,..

where  cosy = cos (¢-¢7) sin A sin 8~ + cos 6 cos 8~
= ¢0S (¢- in 0 sin + 0
cosy, = ¢ {d ¢p) $ si ep cos 0 cos N
2
2 )
2 YS
For aly) = () e , A g << (8.3)
N s Y

these equations can be solved by assuming that b, has the general form

Y. 2
.
2 ¢ Aym
by (0.0) = By (=) e (B.4)
ym
with AY"‘ <<y
m-=1,2,..
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Equation (B.2) requires that

Yo €
2 f\&) Bm~1 aW 1 2 S
B (e ™ Taw @s o w k-t )« e
Yin ' “vs “ym-1 .
20 W 2 v 2 (B.5) -
X fj exp { - (75 - (7P) bsin 07do’ds” R
o © ¥S “ym-1 RO

where ¢os y; = COS (¢p-¢’) sin op sin 0" + cos 0p cos 0

In evaluating the integral on the right side, it is important to understand
that in the integrand we are dealing with three directions, i.e., 6,¢ and ep,¢p
and 07,¢”. For the purpose of the integration, the directions 0,4 and Op,¢ are
fixed while 67¢° varies. Note, furthermore, that y and'vp‘are the angles which
the variable direction includes with the fixed directions while T the angle be- .
tween 6,¢ and ep,¢p is a constant; see Fig. Bl. T

Since it is assumed that the "beamwidths" AYS and AYm are small, the integral
will have appreciable values only if the directions 0,9 and 0 _,¢_ are in close
proximity to each other so that there is a 07,4 range in which both vy and y_~ are
smail simultaneously. Only this range will yield a significant contribution to the
intejral. To determine this contribution, we introduce a local coordinate system
on the unit sphere over which the 0 ,¢" integration is performed. This coordinate
system is indicated in Fig. B2 in planar proje.tion. The coordinate u is counted
along the creat circle through 0,4 and Gp,¢p; the coordinate v is counted in the

e

direction normal to this circle. Both u and v are measured in radians. Evidently,

Y - Y 'y
¥ = (--2R rw)fa Yp * (’-[2l S W e

and
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2n m 2
\/jeAp{—(-—Y—) -(—E) } sin 07687de”
2o S mn 1
+oo
+- / -u 2
:/exp{-[( *‘(A ---- LI Gt S SR RV
t YS ym-1 ¥g ymil
(B.6)
v YZ
A b, 2
. Ys T Vel
A2 A2
Ys T

The extension of the range of integration to infinity has a negligible effect on
the vaiue of the integral. Equation (B.5} is satisfied provided

1 1 ol

= , B = -
A¥m2 AYSZ + Aym-lz m m-1 cos Op

o1
m

With Equations (B.1), (B.3) and (B.4), we have

S

A, LB . P oM
Y15 Ys o By 7y s e

Hence, with Equations (B.6b)

S n
o D =P
Ayﬁr“\/’7l AyS ’ By = @ m (cos Bp)

and with Equation (B.4):
\{ 2
--P_
m-AYS
p 1 ol s, . B.7
(“ 4) = 4 m’(pp) m-AYg € ( )
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APPENGIX C

Asymptotic Behavior of 12.

The asymptotic behavior of I2 for large T is determined by the expansion term
associated with the largest eigenvalue, SN’ which is the only eigenvalue greater
than unity and, thus, provides the slowest attenuation rate. With Equations (25)
and (31), we have

. K (7 NS
L(tsw) > "p Aye 5 M for T -+ o (c.1)
n

where AN is an amplitude coefficient datermined by the boundary conditior at T = 0

and SN is the largest solution of the characteristic Equation (32). With Equation

(30b), this characteristic equation may be written in the forn

~ N A
W Ppo= 1 (c.2)
2 n-o ] Hp

-

where Ap_ = Hn+17Pn-1

As N increases the sum on the right side of Equation (C.1) approaches the function

(1- %N)'l. Since SN > 1, no singularity will occur and we have

~ < _Sa ,
L) » p e AL fL () for T » w (C.3)
- ke a
on
where i SL' A (s)
. . Ta LN s, S. = (S
fald = == 0 A 1) 3 Ny e
1- &~ 1- T
a N
Similarily, the sum on the left side of Cauation (C.2) converges tcwards the integ-
]
ral /P (1- gL )'1 dy as N » > and the ¢haracteristic equation for Sa takes the
a

‘1
form




u 1_ _}J__ 2 Sa "1 ‘
-1 Sa

roj >

The quantities Sa’ Aa and fa are shown in Figs. 7, 8 and 9 as functions of K.

While f, and S, are fully described by Equations (C.3) and (C.4) and depend on W
only, the amplitude Aa depends also on the boundary conditions at v = 0 and the
direction of incidence of the primary plane wave. Fig. 9 implies 6_ = 0 and bound-
ary condition (21b), i.e., IZ(O,U) =0 for 0 < u <1, Numerical evaluations have
shown that for sufficiently large N > 20, the highest order term (k = N) in Equa-
tion (34) approximates Equation (C.3) closely.

Equations (C.3) and (C.4) can also be obtained directly by rigorous solution
of Equation (19b) with the forcing term suppressed. This term decreases with
exp (—?/up) and is insignificant at large ©. This approach, however, leaves the
asymptotic amplitude Aa undetermined.




